1.概要・全体の流れ
サービスの概要
スコアリングサービスは、過去の実績をもとに、お持ちのリストをレスポンスの見込みの高い順にランキングするサービスです。
このサービスを用いて、
- 過去の実績をもとにモデルを作成する【モデル作成】
- お持ちのリストに予測スコアを付与する【予測】
- 作成した予測の効果を検証する【検証】
- 実際の結果をもとにモデルの再構築を行う【リモデル】
が可能です。
2.サンプルデータ
bodaisでは実際の解析の流れをつかんでいただくために、サンプルデータを用意しております。
サンプルデータは こちらからダウンロードできるようになっておりますのでご使用ください。
なお、サンプルデータでの解析は無料(課金対象外)ですので、お気軽に何度でもお試しいただくことが可能です。ただし、一部でもデータ書き換えなどがあると、課金対象となりますのでご注意ください。
3.ジョブ
ジョブとはbodaisのモデル・予測・検証を、プロジェクト毎にまとめて管理するための概念です。一つのジョブに、複数のモデルを作成することができます。またさらに、一つのモデルに複数の予測・検証を作成することが可能です。
まずはジョブを作成します。ご不明な場合は、ジョブのヘルプページをご覧ください。
4.モデル作成
モデル作成の項目では、属性情報と正解フラグをもとに、モデルの作成を行います。
モデル用データの準備(使用するデータ)
まず、お客様がお持ちの、スコアをつけたいデータをご用意いただきます。これをbodaisで解析することができる解析用データに加工していただきます。データは、ID(番号)、属性(顧客属性など)、正解フラグ(購入)の三つの部分で構成されている必要があります。
※以下ではサンプルデータを例に説明いたします。
IDは顧客の属性情報と正解フラグを管理するために設定します。この値が被ることはありません。
属性情報には顧客の「年齢」、「性別」などの基本情報から、「アクセス回数」、「最新アクセス日」、「購入回数」などの顧客の行動履歴などがあります。
正解フラグは、あるアクションがあった際の行動結果を表しています。望ましい結果が得られた際には「あり」、得られなかった際には「なし」で表示します。
データは下記の形式に従って、作成してください。
- データ形式は、カンマ区切りテキスト(CSV形式)にします。
- 1レコード目はデータ列の項目名を記入してください。
- 1列目はユーザーを識別するためのIDにします(モデル作成には使われません)。
- 2列目以降にユーザーの属性を記入します。 属性は整数でコード化してください(例:性別の場合、男性を1、女性を2とする)。
- 最終列に正解フラグを記入します。 正解(あり)の場合1、正解でない(なし)場合0を記入してください。
モデルの作成
モデルの下の+ボタンをクリックし、新規モデル作成に移って下さい。 画面最下部の「新規モデルを作成する」でも同様の効果が得られます。
モデル名称を入力後、モデル用ファイルの「ファイルを選択」ボタンをクリックし、モデル用データを選択してください。
ファイルのアップロードが確認できたら、「解析を開始する」のボタンをクリックして下さい。
プレビュー画面が出てくるので、問題が無ければ最下部の「解析を開始する」をクリックして下さい。
モデル作成日時が「解析待ち」から「解析中」に変わり、最終的に日付に変わったら解析完了です。
解析完了後、次のような画面(モデル詳細情報)になります。
モデル詳細
モデルの詳細情報は「基本情報」、「ヒストグラム」、「デシル分布」、「効果指標」の4つで構成されています。
基本情報:基本情報は主に、モデルの詳細とチャートから成り立っています。詳細情報としては、モデルの名称・作成日時・モデルの評価値などを表示します。下の方までスクロールすれば、モデルに対応する予測の一覧も見る事ができます。
ヒストグラム:縦軸に度数、横軸に階級をとった統計グラフの一種
デシル分布:顧客をスコアの高い順に並べ10等分し、10のグループに分けた場合の属性分布のことです
効果指標:「どのカテゴリが効いているか」を確認することができる指標
レポーティング機能
bodaisではビジュアル化された解析結果をワンクリックでエクセル形式の報告書に出力でき、社内での報告書や企画書にすぐに反映できます。
レポート欄の「レポート取得」ボタン(上記画面の赤枠)をクリックしてください。報告書が自動で作成され、ダウンロードができるようになります。レポートはモデル・予測・検証全ての基本情報画面からダウンロードできます。
効果指標をダウンロード
bodaisでは「どのカテゴリが効いているか」を確認することができる指標、「効果指標」の一覧をダウンロードすることが出来ます。効果指標画面の「効果指標をダウンロードする」(下記画面の赤枠)をクリックしてください。CSV形式でダウンロードされます。
5.予測
予測の項目では、モデルで作成したモデルと、予測用データの属性の値を用いて「予測用データ」へのスコアリング(スコア付け)を行います。
予測用データの準備
まず、お客様がお持ちの、これからスコアを付与したいデータをご用意いただきます。これをbodaisで解析することができる解析用データに加工していただきます。加工は、モデル作成用データと同じ方法で行ってください。コードへの変換方法が、モデルの場合と異なると正しい解析結果が出ませんのでご注意ください。最終列に正解フラグ(購入のありなし)は必要ありません。
※ここではサンプルデータを使用することを前提としています。
予測の作成
画面上部概念図の「予測」の下の+をクリックして下さい。現れた画面から予測を作成します。基本的に、モデル作成時と同様の操作になります。
解析完了後、予測詳細画面が表示されます。表示内容は、モデル作成の場合とほぼ同様です。
6.検証
検証では、予測結果をもとにアクションを行った結果(実績)の検証ができるようになっています。予測と実績の精度比較や、各変数毎の適合度を検証し、次のアクションの検討が可能になっています。
検証用データの準備
実績データは以下のように個人IDと正解フラグの2つで成り立っています。
ID番号が予測データと異なっていると正しく検証が行えませんのでご注意下さい。
検証の作成
画面上部概念図の検証の下の+をクリックして下さい。現れた画面から検証を作成します。基本的に、モデル作成時と同様の操作になります。
解析完了後、検証詳細画面が表示されます。
検証の詳細情報は「全体検証」、「個別検証」の2つで構成されています。
全体検証
全体検証は主に、検証の詳細とチャートから成り立っています。詳細情報としては、モデル、予測、検証それぞれの名称・作成日時・評価値などを表示します。
個別検証
属性ごとの実績正解率、また平均正解率を示したグラフです。
7.リモデル
リモデルとはモデル用データに加えて、予測用データの「属性データ」と、検証用データの「正解フラグ」を組み合わせて新たにモデルを作ることを指します。 これにより、定期的なモデルの更新が簡単に行えます。
※古いモデルを使っていては、前提条件が異なるために現状に即した結果がでてこないことがあります。そのためモデルの更新は定期的に行うようにしてください。
リモデルの作成
検証詳細画面下部、もしくは右上の「リモデル」をクリックしてください。現れた画面からリモデルを作成します。基本的に、モデル作成時と同様の操作になります。